Justification of the log-KdV Equation in Granular Chains: The Case of Precompression
نویسندگان
چکیده
For travelling waves with nonzero boundary conditions, we justify the logarithmic Korteweg– de Vries equation as the leading approximation of the Fermi-Pasta-Ulam lattice with Hertzian nonlinear potential in the limit of small anharmonicity. We prove control of the approximation error for the travelling solutions satisfying differential advance-delay equations, as well as control of the approximation error for time-dependent solutions to the lattice equations on long but finite time intervals. We also show nonlinear stability of the travelling waves on long but finite time intervals.
منابع مشابه
Breathers and surface modes in oscillator chains with Hertzian interactions
We study localized waves in chains of oscillators coupled by Hertzian interactions and trapped in local potentials. This problem is originally motivated by Newton’s cradle, a mechanical system consisting of a chain of touching beads subject to gravity and attached to inelastic strings. We consider an unusual setting with local oscillations and collisions acting on similar time scales, a situati...
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملOn the orbital stability of Gaussian solitary waves in the log-KdV equation
We consider the logarithmic Korteweg–de Vries (log–KdV) equation, which models solitary waves in anharmonic chains with Hertzian interaction forces. By using an approximating sequence of global solutions of the regularized generalized KdV equation in H(R) with conserved L norm and energy, we construct a weak global solution of the log–KdV equation in a subset of H(R). This construction yields c...
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملTraveling Waves for Monomer Chains with Pre-compression
In the present work, we complement our earlier study on the subject of granular crystals in the purely nonlinear limit (no precompression) by considering the case where an underlying linear limit exists (finite precompression). In the latter context, we explicitly prove the existence of supersonic traveling waves, which are smooth, positive and exponentially localized. While numerical computati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2014